
Review….
Ford-Fulkerson algorithm for max-flow: repeatedly 
augment flow along paths in the residual graph

If capacities are integers, F-F finds an integer 
valued flow

Running time: O((m+n)OPT), where OPT is the 
value of the max flow

Correctness?



Today
1) Prove that Ford-Fulkerson algorithm finds a 
maximum flow by proving the Max-Flow Min-Cut 
Theorem

Fundamental result in combinatorial optimization 
(best know example of duality)
Independently proven in 1956 by Ford and 
Fulkerson AND by Elias, Feinstein and Claude 
Shannon

2) Bipartite matching



Flows and Cuts are Intimately 
Related!

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Outline

Definitions: s-t cuts and their capacities

Flow value lemma: how to measure a flow 
using different s-t cuts in the network

The main event: Max-flow Min-Cut Theorem



An s-t cut is a partition (A, B) of V with s ∈ A and 
t ∈ B.
The capacity of a cut (A, B) is:    Σ   c(e)
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capacity of A-B cut = 9 + 15 + 8 + 30 = 62
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capacity of cut = 9 + 15 + 8 + 30 = 62
(Capacity is sum of weights on edges leaving A.)



B
A

Flow value lemma.  Let f be any flow, and let (A, B) 
be any s-t cut.  Then, the net flow sent across the 
cut is equal to the amount leaving s.
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Flows and Cuts

Another interpretation: we can measure the value 
of a flow by selecting any s-t cut, and looking at 
the net flow crossing the cut.



Proof
Flow value lemma.  Let f be any flow, and let (A, B) be 
any s-t cut.  Then ∑ f(e) - ∑ f(e) = v(f).

e out of A e into A

Proof on board.



Important Corollary!

Flow value lemma.  Let f be any flow, and let (A, B) 
be any s-t cut.  Then ∑ f(e) - ∑ f(e) = v(f).

Corollary.  Let f be any flow, and let (A, B) be any s-t 
cut. Then v(f) ≤ c(A, B).

(See examples on previous slides) 

Proof as exercise

e out of A e into A



Important Corollary!

Corollary.  Let f be any flow, and let (A, B) be any 
s-t cut. Then v(f) ≤ c(A, B). 

Interpretation: every cut gives an upper bound on 
the value of every flow, and hence the value of 
the maximum flow

What is the best (i.e. smallest) upper bound?



B
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Find an s-t cut of minimum capacity.
capacity = 10 + 8 + 10 = 28

Minimum Cut Problem
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Max-Flow Min-Cut 
Theorem

Theorem: Let f be a flow such that there are no s-t 
paths in the residual graph Gf. Let (A, B) be the s-t 
cut where A contains the nodes reachable from s in 
Gf, and B = V-A. Then v(f) = C(A, B), and f is a 
maximum flow and (A,B) is a minimum cut.

Corollary: Ford-Fulkerson returns a maximum flow.

Corollary: In any flow network, the value of the max 
flow is equal to the capacity of the min cut.



Proof

Proof on board



Min-Cut

Another corollary: given a maximum flow, we can 
find a minimum cut in O(m+n) time.

How?



Finding Min Cut
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maximum flow = 19
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Ford-Fulkerson Wrap-Up
We’ve now shown that F-F:
(1) runs in O((m+n)OPT) time → pseudo-polynomial
(2) finds an integer-valued flow (if capacities are 
integers)
(3) finds a maximum flow

By choosing good augmenting paths, F-F can be improved 
to run O(m2 log C) time, where C is the capacity of any 
cut, and hence an upper bound on OPT → polynomial

Other max-flow algorithms run in O(n2m) or O(n3) time → 
strongly polynomial



OK!  But what are they 
good for???



Matching.
Input:  undirected graph G = (V, E).
M ⊆ E is a matching if each node appears in at most 1 
edge in M.
Max matching:  find a max cardinality matching.

Matching



Bipartite Matching
Bipartite matching.

Input:  undirected, bipartite graph G = (L ∪ R, E).
M ⊆ E is a matching if each node appears in at most 
1 edge in M.
Max matching:  find a max cardinality matching.
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RL

Is this the max 
matching?



Bipartite Matching
Bipartite matching.

Input:  undirected, bipartite graph G = (L ∪ R, E).
M ⊆ E is a matching if each node appears in at most 
1 edge in M.
Max matching:  find a max cardinality matching.
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Max flow formulation.
Direct all edges from L to R and assign capacity 
of 1.
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Max flow formulation.
Add source s, and unit capacity edges from s to 
each node in L.
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Max flow formulation.
Add sink t, and unit capacity edges from each 
node in R to t.
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Max flow formulation.
Solve max flow problem.
Claim:  edges between L and R with flow = 1 
identify max matching.
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Proof

Show there is a bijection between a matching 
M in the original graph, and a flow f in the 
new graph, and that v(f) = |M|.

Thus, a maximum flow is a maximum matching.

Details: exercise



Next Time

More flow applications! 


