
Review….
Ford-Fulkerson algorithm for max-flow: repeatedly
augment flow along paths in the residual graph

If capacities are integers, F-F finds an integer
valued flow

Running time: O((m+n)OPT), where OPT is the
value of the max flow

Correctness?

Today
1) Prove that Ford-Fulkerson algorithm finds a
maximum flow by proving the Max-Flow Min-Cut
Theorem

Fundamental result in combinatorial optimization
(best know example of duality)
Independently proven in 1956 by Ford and
Fulkerson AND by Elias, Feinstein and Claude
Shannon

2) Bipartite matching

Flows and Cuts are Intimately
Related!

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Outline

Definitions: s-t cuts and their capacities

Flow value lemma: how to measure a flow
using different s-t cuts in the network

The main event: Max-flow Min-Cut Theorem

An s-t cut is a partition (A, B) of V with s ∈ A and
t ∈ B.
The capacity of a cut (A, B) is: Σ c(e)

Cuts

e out of A

BA

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

capacity of A-B cut = 9 + 15 + 8 + 30 = 62

BA

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

capacity of cut = 9 + 15 + 8 + 30 = 62
(Capacity is sum of weights on edges leaving A.)

B
A

Flow value lemma. Let f be any flow, and let (A, B)
be any s-t cut. Then, the net flow sent across the
cut is equal to the amount leaving s.

Flows and Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

∑ f(e) - ∑ f(e) = v(f)
e out of A e into A

BA

Flow value lemma. Let f be any flow, and let (A, B)
be any s-t cut. Then, the net flow sent across the
cut is equal to the amount leaving s.

Flows and Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

∑ f(e) - ∑ f(e) = v(f)
e out of A e into A

B

A

Flow value lemma. Let f be any flow, and let (A, B)
be any s-t cut. Then, the net flow sent across the
cut is equal to the amount leaving s.

Flows and Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

∑ f(e) - ∑ f(e) = v(f)
e out of A e into A

Flows and Cuts

Another interpretation: we can measure the value
of a flow by selecting any s-t cut, and looking at
the net flow crossing the cut.

Proof
Flow value lemma. Let f be any flow, and let (A, B) be
any s-t cut. Then ∑ f(e) - ∑ f(e) = v(f).

e out of A e into A

Proof on board.

Important Corollary!

Flow value lemma. Let f be any flow, and let (A, B)
be any s-t cut. Then ∑ f(e) - ∑ f(e) = v(f).

Corollary. Let f be any flow, and let (A, B) be any s-t
cut. Then v(f) ≤ c(A, B).

(See examples on previous slides)

Proof as exercise

e out of A e into A

Important Corollary!

Corollary. Let f be any flow, and let (A, B) be any
s-t cut. Then v(f) ≤ c(A, B).

Interpretation: every cut gives an upper bound on
the value of every flow, and hence the value of
the maximum flow

What is the best (i.e. smallest) upper bound?

B

A

Find an s-t cut of minimum capacity.
capacity = 10 + 8 + 10 = 28

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

Max-Flow Min-Cut
Theorem

Theorem: Let f be a flow such that there are no s-t
paths in the residual graph Gf. Let (A, B) be the s-t
cut where A contains the nodes reachable from s in
Gf, and B = V-A. Then v(f) = C(A, B), and f is a
maximum flow and (A,B) is a minimum cut.

Corollary: Ford-Fulkerson returns a maximum flow.

Corollary: In any flow network, the value of the max
flow is equal to the capacity of the min cut.

Proof

Proof on board

Min-Cut

Another corollary: given a maximum flow, we can
find a minimum cut in O(m+n) time.

How?

Finding Min Cut

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
0

0

0

0 0 0

0
0

 G:

Flow value = 0

0

maximum flow = 19

Finding Min Cut

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

10

 G

s

2

3

4

5 t

 Gf

 10

 10

 9

 6

6

 9

 9

 2

0

 3

 7

 1

 1

 1

9 9

7

3

9

 1

Ford-Fulkerson Wrap-Up
We’ve now shown that F-F:
(1) runs in O((m+n)OPT) time → pseudo-polynomial
(2) finds an integer-valued flow (if capacities are
integers)
(3) finds a maximum flow

By choosing good augmenting paths, F-F can be improved
to run O(m2 log C) time, where C is the capacity of any
cut, and hence an upper bound on OPT → polynomial

Other max-flow algorithms run in O(n2m) or O(n3) time →
strongly polynomial

OK! But what are they
good for???

Matching.
Input: undirected graph G = (V, E).
M ⊆ E is a matching if each node appears in at most 1
edge in M.
Max matching: find a max cardinality matching.

Matching

Bipartite Matching
Bipartite matching.

Input: undirected, bipartite graph G = (L ∪ R, E).
M ⊆ E is a matching if each node appears in at most
1 edge in M.
Max matching: find a max cardinality matching.
1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

Is this the max
matching?

Bipartite Matching
Bipartite matching.

Input: undirected, bipartite graph G = (L ∪ R, E).
M ⊆ E is a matching if each node appears in at most
1 edge in M.
Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3'
4-5'

Max flow formulation.
Direct all edges from L to R and assign capacity
of 1.

Bipartite Matching

1

3

5

1'

3'

5'

2

4

2'

4'

RL 1

1
1

1 1

1
1

1
1

1

Max flow formulation.
Add source s, and unit capacity edges from s to
each node in L.

Bipartite Matching

1

3

5

1'

3'

5'

2

4

2'

4'

RL 1

1
1

1 1

1
1

1
1

1

s

1

1

1

11

Max flow formulation.
Add sink t, and unit capacity edges from each
node in R to t.

Bipartite Matching

1

3

5

1'

3'

5'

2

4

2'

4'

RL 1

1
1

1 1

1
1

1
1

1

s

1

1

1

11

t

11

1

1

1

Max flow formulation.
Solve max flow problem.
Claim: edges between L and R with flow = 1
identify max matching.

Bipartite Matching

1

3

5

1'

3'

5'

2

4

2'

4'

RL 1

1
1

1 1

1
1

1
1

1

s

1

1

1

11

t

11

1

1

1

Proof

Show there is a bijection between a matching
M in the original graph, and a flow f in the
new graph, and that v(f) = |M|.

Thus, a maximum flow is a maximum matching.

Details: exercise

Next Time

More flow applications!

